=(k^2+6k)(k^2+2k-24)

Simple and best practice solution for =(k^2+6k)(k^2+2k-24) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =(k^2+6k)(k^2+2k-24) equation:


Simplifying
0 = (k2 + 6k)(k2 + 2k + -24)

Reorder the terms:
0 = (6k + k2)(k2 + 2k + -24)

Reorder the terms:
0 = (6k + k2)(-24 + 2k + k2)

Multiply (6k + k2) * (-24 + 2k + k2)
0 = (6k * (-24 + 2k + k2) + k2(-24 + 2k + k2))
0 = ((-24 * 6k + 2k * 6k + k2 * 6k) + k2(-24 + 2k + k2))
0 = ((-144k + 12k2 + 6k3) + k2(-24 + 2k + k2))
0 = (-144k + 12k2 + 6k3 + (-24 * k2 + 2k * k2 + k2 * k2))
0 = (-144k + 12k2 + 6k3 + (-24k2 + 2k3 + k4))

Reorder the terms:
0 = (-144k + 12k2 + -24k2 + 6k3 + 2k3 + k4)

Combine like terms: 12k2 + -24k2 = -12k2
0 = (-144k + -12k2 + 6k3 + 2k3 + k4)

Combine like terms: 6k3 + 2k3 = 8k3
0 = (-144k + -12k2 + 8k3 + k4)

Solving
0 = -144k + -12k2 + 8k3 + k4

Solving for variable 'k'.
Remove the zero:
144k + 12k2 + -8k3 + -1k4 = -144k + -12k2 + 8k3 + k4 + 144k + 12k2 + -8k3 + -1k4

Reorder the terms:
144k + 12k2 + -8k3 + -1k4 = -144k + 144k + -12k2 + 12k2 + 8k3 + -8k3 + k4 + -1k4

Combine like terms: -144k + 144k = 0
144k + 12k2 + -8k3 + -1k4 = 0 + -12k2 + 12k2 + 8k3 + -8k3 + k4 + -1k4
144k + 12k2 + -8k3 + -1k4 = -12k2 + 12k2 + 8k3 + -8k3 + k4 + -1k4

Combine like terms: -12k2 + 12k2 = 0
144k + 12k2 + -8k3 + -1k4 = 0 + 8k3 + -8k3 + k4 + -1k4
144k + 12k2 + -8k3 + -1k4 = 8k3 + -8k3 + k4 + -1k4

Combine like terms: 8k3 + -8k3 = 0
144k + 12k2 + -8k3 + -1k4 = 0 + k4 + -1k4
144k + 12k2 + -8k3 + -1k4 = k4 + -1k4

Combine like terms: k4 + -1k4 = 0
144k + 12k2 + -8k3 + -1k4 = 0

Factor out the Greatest Common Factor (GCF), 'k'.
k(144 + 12k + -8k2 + -1k3) = 0

Subproblem 1

Set the factor 'k' equal to zero and attempt to solve: Simplifying k = 0 Solving k = 0 Move all terms containing k to the left, all other terms to the right. Simplifying k = 0

Subproblem 2

Set the factor '(144 + 12k + -8k2 + -1k3)' equal to zero and attempt to solve: Simplifying 144 + 12k + -8k2 + -1k3 = 0 Solving 144 + 12k + -8k2 + -1k3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

k = {0}

See similar equations:

| -(11-2x)=5(-4x+5) | | 0.51m+0.03=0.4-0.74 | | 217-2/3×60 | | (8n+5)+3= | | 2x^2+-9=7x+3 | | x^3=0.98 | | 2l-4w=58 | | x^2=0.98 | | 8y-8/3=-4y | | -27+21-14+x=-20 | | 10x-(2x+8)=-3(15-4x) | | 2/3*=6 | | 0.8k+7=-0.7k+12 | | 3j=110 | | 3x^2+12x+2=7 | | 4x+2=3+5x | | 0.8k+7=7p+12 | | 2x+-9=7x+3 | | x/5=y/3 | | 3/10•17/10 | | q(s)=8s/s-6 | | 5x-15/10x | | -42+5y=17 | | 360/x=20 | | 3x(x^2+7)= | | -3(2x-1)+1=-2(-x+6) | | x(3x+1)=10 | | 2(b+2)=.66(b+6) | | 10x+20y=400 | | 360-(78+107+83)=x | | 5x+-9=4x+3 | | -3-8(-2)-5(-6)= |

Equations solver categories